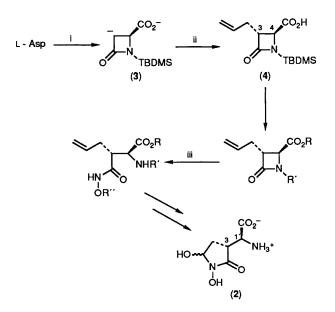

Enantiospecific Synthesis of Dealanylalahopcin

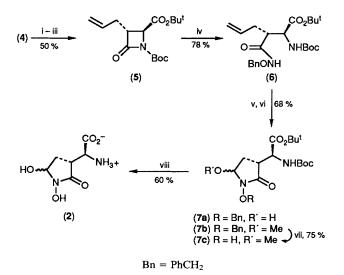
Jack E. Baldwin,* Robert M. Adlington, David W. Gollins, and Christopher J. Schofield


The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

The first synthesis of the novel α -amino acid dealanylalahopcin from (L)-aspartic acid in thirteen steps is described.

The dipeptide antibiotic alahopcin (B-52653) (1), isolated by Higashide *et al.* from a culture of *Streptomyces albulus*, was found to be active against a wide range of both Gram-positive and Gram-negative bacteria.¹ From the same fermentation studies a new α -amino acid (2) was also discovered. This amino acid had low antibacterial activity [~1% *cf.* alahopcin (1)] but showed similar prolyl collagen hydroxylase and bacterial α -amylase inhibition to (1).² Enzymatic hydrolysis (using α -amino acid (2) and (L)-alanine; thus (2) was named dealanylalahopcin (B-52653-C).² A degradative study was performed from which the structures of alahopcin (1) and dealanylalahopcin (2) were deduced;³ however to date, no synthetic route to these compounds has been published to confirm their structures and configurations.

Boc = t-butoxycarbonyl


 $TBDMS = Bu^tMe_2Si$

Scheme 1. Reagents: i, see ref. 5(c); ii, allyl bromide then H_3O^+ ; iii, NH_2 -OR".

Previously, we demonstrated that a β -lactam derived from (L)-serine could be used as a homochiral synthon for β -functionalised α -amino acid synthesis.⁴ As an extension of this principle a stereospecific synthesis of dealanylalahopcin (2), from a β -lactam precursor derived from (L)-aspartic acid, is now reported.

Retrosynthetic analysis of dealanylalahopcin (2) reveals its structure to be derived from a ring closed form of a stereospecifically β -functionalised (L)-aspartic acid derivative. The required 3*R*, 1'S-relative stereochemistry of (2) should in principle be available from a *trans*-alkylation,⁵ with allyl bromide, of the β -lactam dianion (3).^{5c} Subsequent β -lactam opening by a hydroxylamino nucleophile would then provide the key structural requirement of (2) (Scheme 1).

Thus, allylation of (3) [allyl bromide (2.2 equiv.), tetrahydrofuran (THF), 0 °C, 2 h] gave, after acidic work-up, the acid (4) (95%) as the sole allylated product[†] for which a *trans*-stereochemistry was established from the observed coupling constant J_{3H-4H} of 3 Hz.^{5b,c} As the hydroxylamino nucleophile, subsequently required for β -lactam opening, might have reacted with unhindered esters and in order to activate the β -lactam towards such nucleophilic attack,⁶ the acid (4) was transformed to the *N*-(t-butoxycarbonyl) t-butyl ester (5) [50% from (4)]. Initially, (5) proved resistant to ring opening by *O*-benzylhydroxylamine (THF, reflux), but with the addition of sodium ethanethiolate (10 mol%)⁷ coupled with the slow addition of potassium t-butoxide (80 mol%) over

Scheme 2. Reagents: i, O-(t-butyl)trichloroacetimidate, catalytic BF₃·Et₂O, dichloromethane:cyclohexane, 0 °C (ref. 8); ii, CsF, MeOH; iii, Boc₂O, catalytic dimethylaminopyridine, MeCN; iv, NH₂OBn, Na⁺⁻SEt(10 mol%), K⁺⁻OBu^t(80 mol%), THF, reflux; v, catalytic OsO₄, NaIO₄, H₂O:1,4-dioxan; vi, MeOH, catalytic TFA; vii, H₂, 10% Pd/C, MeOH; viii, 1 mm HCl: 1,4-dioxan (1:1).

 $^{^{+1}}$ H NMR analysis (200 MHz): i, of the total crude from (3) revealed (4) as the only detectable allylated product (>95%); ii, of the crude from (5) revealed (6) as the only detectable stereoisomer (>95%).

6 h, the ring opening of (5) by O-benzylhydroxylamine to (6) was realised in 78% yield.[†] Oxidative cleavage of the alkene (catalytic OsO₄, NaIO₄) gave an aldehyde [in equilibrium with the ring closed form (7a)] which was directly protected [MeOH, catalytic trifluoroacetic acid (TFA)] as the ring closed methoxylactam (7b) [68% from (6), as a 6:1 epimeric mixture]. Hydrogenolysis (H₂, 10% Pd/C, MeOH) followed by aqueous acid hydrolysis [1,4-dioxan: 1 \bowtie HCl (1:1), 18 h] and cationic ion exchange chromatography gave dealanylalahopcin (2) (45%) (Scheme 2).[‡]

In summary, the first synthesis of dealanylalahopcin (2) has been achieved confirming the original structural assignment based upon a degradative study.³ Noteworthy points of the synthetic approach are the stereospecific '*trans*' allylation (>95%) of the β -lactam dianion (3) and the use of the soformed stereospecifically functionalised β -lactam as a stereospecifically β -alkylated (L)-aspartic acid synthon. The conditions required for the β -lactam ring opening also merit comment. Presumably the thiolate rapidly ring opened the β -lactam (5) to the thioester (8)^{4a} (itself isolable from crude reaction mixtures) and this sterically more accessible form could then be transformed to the hydroxamate (6). The potassium t-butoxide was probably required to deprotonate the hydroxamate (6) which may otherwise have interfered with the reaction by protonation of the *O*-benzylhydroxylamine. Synthesis of the parent dipeptide alahopcin (1) is a current objective.

Received, 14th February 1990; Com. 0/00686F

References

- 1 E. Higashide, S. Horii, H. Ono, N. Mizokami, T. Yamazaki, M. Shibata, and M. Yoneda, J. Antibiot., 1985, 38, 285.
- 2 E. Higashide, T. Kanamaru, H. Fukase, and S. Horii, J. Antibiot., 1985, 38, 296.
- 3 S. Horii, H. Fukase, E. Higashide, M. Yoneda, H. Nishida, H. Sakai, A. Hirota, and A. Isogai, J. Antibiot., 1985, 38, 302.
- 4 (a) J. E. Baldwin, R. M. Adlington, and D. J. Birch, J. Chem. Soc., Chem. Commun., 1985, 256; (b) Tetrahedron Lett., 1985, 26, 5931.
- 5 (a) T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen, and F. A. Bouffard, J. Am. Chem. Soc., 1980, 102, 6161; (b) F. A. Bouffard and B. G. Christensen, J. Org. Chem., 1981, 46, 2208; (c) P. J. Reider and E. J. J. Grabowski, Tetrahedron Lett., 1982, 23, 2293; (d) K. Okano, T. Izawa, and M. Ohno, *ibid.*, 1983, 24, 217; (e) E. J. Thomas and A. C. Williams, J. Chem. Soc., Chem. Commun., 1987, 992.
- 6 D. L. Flynn, R. E. Zelle, and P. A. Grieco, J. Org. Chem., 1983, 48, 2424.
- 7 The use of thiolate catalysis for the ring opening of β -lactams was described previously, see ref. 4(a).
- 8 A. Armstrong, I. Brackenridge, R. F. W. Jackson, and J. M. Kirk, Tetrahedron Lett., 1988, 29, 2483.

[‡] Analytical data for (2): MS m/z 191 (FAB⁺); [α]_D²⁰ +45.6° (c 0.88, H₂O), [α]_D²⁰ +56.2° (c 0.4, 0.1 M HCl); {lit.,² [α]_D²⁰ +50.8° (c 0.5, H₂O), [α]_D²⁰ +55.6° (c 1, 0.1 M HCl); {lit.,² [α]_D²⁰ +50.8° (c 0.5, H₂O), [α]_D²⁰ +55.6° (c 1, 0.1 M HCl)}; δ_H (500 MHz, D₂O, internally referenced to 1,4-dioxan @ δ 3.63) 1.53—1.59 and 2.55—2.61 (2H, 2 × m, 4-H, major epimer), 2.00—2.05 and 2.09—2.15 (2H, 2 × m, 4-H, major epimer), 2.88—2.92 (1H, m, 3-H, minor epimer), 3.06—3.11 (1H, m, 3-H, major epimer), 3.95—3.98 (2H, m, 1'H, both epimers), 5.14 (1H, d, J 5, 7 Hz, 5-H, minor epimer), 5.19 (1H, d, J 7 Hz, 5-H, major epimer); δ_C (125.8 MHz, D₂O, internally referenced to 1,4-dioxan) 28.6 and 28.7 (4-C), 38.5 and 39.1 (3-C), 54.7 (1'-C), 81.7 and 82.1 (5-C), and 169.1, 170.0, and 170.7, (2 × C=O), (¹H and ¹³C NMR data consistent with that reported previously^{2.3}).